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The impact of a plane punch on an elastic half-plane�
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Abstract

The transient dynamic contact problem of the impact of a plane absolutely rigid punch on an elastic half-plane is considered. The
solution of the integral equation of this problem in terms of the unknown Laplace transform of the contact stresses at the punch base
is constructed by a special method of successive approximations. The solution of the transient dynamic contact problem is obtained
after applying an inverse Laplace transformation to the solution of the integral equation over the whole time range of the impact
process, and the law of the penetration of the punch into the elastic medium is determined from a Volterra-type integrodifferential
equation. The conditions for the punch to begin to separate from the elastic half-plane are formulated from the solution obtained, and
all the stages of the separation process are investigated in detail. The law of the punch motion on the elastic half-plane and the width
of the contact area, which varies during the separation, are then determined from the solution of the Volterra-type integrodifferential
equation when an additional condition is satisfied.
© 2006 Elsevier Ltd. All rights reserved.

The zeroth term of the asymptotic form of this problem was obtained previously in Ref. 1–3. An algorithm for
constructing the solution was described in Ref. 3, when the boundary conditions of the problem are satisfied at each
step of its solution by solving a number of the mixed problems formulated in a special way.

1. Formulation of the problem and its integral equation

We will consider the transient dynamic contact problem of the impact of an absolutely rigid plane punch of width
2a and mass m on an elastic half-plane (−∞ < x < ∞, 0 ≤ y < ∞) with initial velocity v0. The punch is imbedded into
the half-plane along the y axis, which is its axis of symmetry. There are no friction and cohesive force between the
punch base and the half-plane. At the initial instant of time, the half-plane is at rest, and hence the displacements of the
elastic medium u = u(x, y, t), v = v(x, y, t) and their velocities will be zero at t = 0. The stresses and displacements
are zero at infinity in the medium (when

√
x2 + y2 → ∞).

The formulation of this problem in the generally-accepted notation in the theory of elasticity3–6 includes the following
mixed boundary conditions (t > 0):

(1.1)

where �yy and �xy are the normal and shear stresses and �(t) is the law of the punch motion on the elastic half-plane.
Using a Laplace integral transformation (with respect to the time t) with parameter p and a Fourier integral transfor-

mation (with respect to the x coordinate), applied in succession to the differential equations of the theory of elasticity4,5
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and to the boundary conditions (1.1), taking into account the conditions at infinity and the zero initial conditions, the
problem can be reduced to solving an integral equation of the first kind in dimensionless form1,2

(1.2)

(1.3)

where �L(x, p) is the Laplace transform of the function �(x, t) – the required distribution function of the contact stresses
under the punch, �L(p) is the Laplace transform of the function �(t) (1.1), c1 and c2 are the propagation velocities of
longitudinal and transverse elastic displacement and stress waves, � and � are the Lamé coefficients, and � is the
density of the material of the elastic half-plane. The contour of integration � in the complex plane u = � + i� extends
from −∞ to +∞ along the real axis � = 0 at an angle of –argp to its positive direction.

2. The zeroth term of the solution of the integral equation and of the problem

The solution of integral Eq. (1.2) in the form of the zeroth term of the asymptotic solution of the integral equation4

for large p (small �) was constructed in Ref. 1,2 in the form of the superposition

(2.1)

for 0 ≤ � ≤ 2�. The zero subscript here corresponds to the number of the term of the solution �L(x, p) of integral Eq.
(1.2), and �L

0±(x, p) are the solutions of the integral equations

(2.2)

(2.3)

while �L∞(x, p) is the solution of the integral equation of the convolution along the whole axis

(2.4)

Integral Eqs. (2.2) and (2.3), by means of linear replacements, can be reduced to integral equations on the semi-
axis, the solution of which is constructed by the Wiener-Hopf method, while the symbol of the kernel K(u) (1.3) is
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approximated by an expression of special form1,2

(2.5)

where ±	R are Rayleigh poles, determined from the Rayleigh equation R(u) = 0.
Approximation (2.5) enables us to surmount the main difficulty of the Wiener-Hopf method, namely, factorization

of the function K(u), i.e. its representation in the form of the product of two functions K±(u), regular in the upper half-
plane (subscript plus) and the lower half-plane (subscript minus). Factorization of the approximation of the function
K(u) (2.5) can be achieved by elementary means; we have

(2.6)

The solutions of integral Eqs. (2.2) and (2.3), obtained previously in Ref. 1,2, can be represented in the new form

(2.7)

where

(2.8)

The function �L∞(x, p), which is the solution of integral Eq. (2.4) and obtained in Ref. 1,2 using a Fourier integral
transformation, is defined by the formula

(2.9)

The functions �̃L
0±(x, p) (2.8) are Laplace transforms of diffraction waves, generated by the corner points x = ±1 of

the edges of the punch base.
The zeroth term (2.1) of the asymptotic form of the solution of integral Eq. (1.2), taking formula (2.7) into account

with the separated Laplace transforms of the diffraction waves, acquires the new form

(2.10)

with functions �̃L
0±(x, p) and �L∞(x, p), defined by formulae (2.8) and (2.9) respectively.

After evaluating the inverse Laplace transformation of the function (2.10), we obtain the zeroth term of the solution
of the problem in question,1,2 written in the new form

(2.11)

where

(2.12)
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(2.13)

H(t) is the Heaviside function, and a dot denotes a derivative of the function f(t) with respect to time t.
The functions �̃L

0±(x, t) (2.13) describe diffraction waves, generated by the corner points of the edges of the punch
base x = ±1 at the initial instant of time (t = 0) when the punch is imbedded. Here we are considering the front of the
longitudinal stress (see the expression for q(t, u)) with the root singularity (clt − a(1 ± x))−1/2 in the case f(0) �= 0 or
smooth front of the type (clt − a(1 ± x))1/2 in the case when f(0) = 0, and the front of the transverse wave in w∗(t), a
constant singularity of the root type (1 ± x)−1/2 (independent of time during the period the punch is imbedded and up
to the instant when it begins to separate from the elastic medium) at the corner points of the edges of the punch base
x = ±1.

The solution (2.11)–(2.13) obtained is the zeroth term of the solution of the problem and is defined for the time
interval 0 < t < t1, i.e. until the diffraction waves (2.13), generated by the corner points of the edges of the punch base,
reach the corner points of the edges of the punch base opposite to them.

The law of the punch motion �(t), like the motion of its centre of mass, is found from the differential equation1,2

(2.14)

for the period of time 0 < t < t1, during which the force Q(t) of the elastic resistance of the medium to the penetration
of the punch is equal to the force of contact action of the punch on the elastic medium, taken with the opposite sign

(2.15)

In the time interval considered, by formula (2.11), we have

(2.16)

(2.17)

(2.18)

The formulae obtained enable us to calculate the change in the scalar field of the contact stresses under the punch
�0(x, t) and to determine the law of the punch penetration �(t), the penetration rate �(t) and other characteristics of the
process of the punch penetration during the period of time 0 < t < t1, provided that the punch does not separate from
the elastic medium during this period.

3. Separation of the punch from the elastic medium

In a number of papers (Ref. 1–3,6 etc.), in which analytical methods were used when solving transient dynamic
contact problems, particular attention was devoted to investigating the process of the penetration of a plane rigid punch
into an elastic medium, assuming that either the law of the punch penetration is known or it is known that the punch
adheres to the surface of the elastic medium, while the width of the contact area is fixed and is identical with the width
of the punch. An investigation of the processes accompanying impact presupposes an investigation not only of the
process by which the punch penetrates into the elastic medium, but also its second phase, namely, the extrusion of
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Fig. 1.

the punch, which includes the separation of the punch from the elastic medium. An analysis of the separation of the
punch enables additional important characteristics of the processes accompanying the impact to be established and
investigated, such as the duration of the contact, the rate of detachment, etc.

For a fixed width of the contact area 2a, which is identical with the width of the punch, when a solution of problem
(2.11)–(2.13) is available for 0 < t < t1, it remains to determine the law of the punch penetration �(t) from Eq. (2.14) and
to substitute it into relations (2.11)–(2.13). Formulae (2.11)–(2.13) show that during the penetration of a plane punch
the corner points of the edges of the punch base x = ±1 are stress concentration points, and fracture of the surface of
the elastic medium outside the punch base occurs (Fig. 1). The direction of the velocity of the punch motion �(t) in
the figures presented here is denoted by an arrow; the length of the arrow corresponds to the value of the velocity.
The elastic resistance force of the medium to the punch penetration Q(t) (0 < t < t1) initially stops the punch (in the
deepened position), and then begins to press it out, which is accompanied by local bulging of the medium under the
punch. As a result, an instant of time t = t* arrives when the corner points at the edges of the punch base separate from
the elastic medium and lose their fundamental property, namely, the property of stress concentrators, and the fracture on
the surface outside the punch then disappears and the surface becomes smooth (Fig. 2). From a mathematical point of
view this means that, in the solution �0(x, t) of problem (2.11)–(2.13) t = t*, the constant (time-independent) root-type

singularity ω0(x, t)(1 − x2)
−1/2

at the corner points of the edges of the punch base disappears. This can only occur if
the coefficient

(3.1)

which occurs with this singularity, vanishes: C0(t*, a) = 0, 0 < t* < t1. Then, to determine the instant of time t = t* when
the punch begins to detach it is necessary to solve the equation

(3.2)

Fig. 2.
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Fig. 3.

with a = const. Then, at the instant of time t = t* the solution �0(x, t) (2.11)–(2.13) of integral Eq. (1.2) changes from the

class of integrable functions �0(x, t) = 
0(x, t)(1 − x2)
−1/2

(
0(x, t) ∈ C[−1,1]) for each t ∈ (0, t) in the section |x| < 1)
which allow of a root singularity at the corner points of the edges of the punch base, into a class of continuous functions
�0(x, t) ∈ C[−1,1]) in the section |x| ≤ 1.

After the corner points of the edges of the punch base x = ± 1 separated from the elastic medium when t > t* (t* < t1)
the half-width of the contact area a begins to change with time (Fig. 3). Since the corner points of the edges of the
punch base when t = t* separated from the elastic medium, the solution �0(x, t) (2.11)–(2.13) when t ≥ t* should be
determined in the class of continuous functions, which can only be obtained by satisfying condition (3.2) when t > t*.
This can be achieved only by choosing the half-width of the contact area a, as a result of which, for each t > t*, condition
(3.2) is converted into an algebraic equation for determining the value of the function a(t) corresponding to the instant
of time t

(3.3)

It follows from formula (3.2) that C0(t, a(t)) depends on the law of the punch penetration �(t), and hence Eq. (3.3)
is solved for a(t) at each step with respect to t of the numerical integration of the differential equation of the punch
motion (2.14), the right-hand side of which depends in turn not only on t but also on the half-width of the contact area
a(t), which occurs in formulae (2.15)–(2.18). It must be emphasised that in relation (3.3) a does not depend on the
integration variable � and depends solely on t.

It can be shown that the solution a(t) of Eq. (3.3) is a decreasing function for t* < t < t** < t1, where t** is the time the
punch separates from the elastic medium, i.e. the time when a(t**) = 0. The function P(t) (2.16)–(2.18), which defines
the right-hand side of differential Eq. (2.14), is a function which decreases as a → 0, for which the following estimate
holds

(3.4)

An important characteristic of the separation of the punch from the elastic medium is its rate of separation v∗ = ε̇(t∗∗),
determined in the course of solving problem (2.14) simultaneously with condition (3.3); the rate of change of the half-
width of the contact area ȧ(t)(t∗ < t < t∗∗) is then also determined.

It should be noted that the expression for C0(t, a) and the integral in (3.2) is evaluated by parts. We then obtain the
condition

(3.5)

in which P(�), like ḟ (�), depends on a(t) (see formulae (2.16)–(2.18)), and m is the mass of the punch. The use of
condition (3.5) is often more convenient than (3.2) when solving the problem numerically.
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4. The solution of the problem over the whole period of time of the impact

We will construct a solution of the problem for the time interval t1 < t < 2t1, assuming that separation of the punch
from the elastic medium does not occur during the time t ∈ (0, t1). Diffraction waves �0(x, t), generated by the edges
of the punch base at the initial instant of impact, travel along the whole punch base from one edge to the other and,
when t = t1, generate, at opposite corner points of the edges of the punch base x = ±1, new diffraction waves �̃1±(x, t),
which reach the free surface of the elastic medium outside the punch −∞ < x < −1, 1 < x < ∞, as a result of which
the formulation of the initial problem breaks down for t > t1. To remove the load from the diffraction wave �̃0±(x, t)
on the surface outside the punch when t1 < t < 2t1, where a stress-free surface should be, it is necessary to correct the
boundary conditions of the initial problem on the surface outside the punch, as was done earlier in Ref. 3.

To obtain the first term �1(x, t) of the solution of the problem in the new time interval t1 < t < 2t1, one must determine
�L

1 (x, p) for 2� < � < 4�, which reduces to constructing the first step of a special method of successive approximations
of the solution of integral Eq. (1.2). With this aim in view, we subtract and add �L

0 (x, p) (2.1) to �L(x, p) in integral
Eq. (1.2) and, taking relations (2.2)–(2.4) for �L

0±((1 ± x)/�, p), �L∞(x/�, p) into account, and also the structure of
�L

0±((1 ± x)/�, p) (2.7), we obtain the new integral relation

(4.1)

The subscript unity denotes the first term of the solution of integral Eq. (1.2)

(4.2)

The diffraction waves �̃L
0±(x, P) for 2� < � < 4� in integral relation (4.1), corresponding to the time interval

t1 < t < 2t1, exist outside the punch base. In order to avoid the emergence of diffraction waves, it is necessary, on
the right-hand side of relation (4.1), to reflect the load specularly with respect to the corner points of the punch base
x = ±1 in the x axis, which is easily done if we interchange the Heaviside functions H (1 ± x), in front of the integrals
on the right-hand side of Eq. (4.1). This yields the integral equation for determining �L

1 (x, p), the solution of which
can be constructed in the form of the superposition of new diffraction waves

(4.3)

The functions on the right-hand side of Eq. (4.3) are solutions of the following integral equations on the semiaxes

(4.4)

(4.5)

The solutions of these equations, like integral Eqs. (2.2) and (2.3), can be constructed by the Wiener-Hopf method,7

where it is required to invert the same integral operator as at the zeroth step of the method of successive approximations
when inverting the integral operators (2.2) and (2.3). Making the linear replacements of variables in integral Eqs. (4.4)
and (4.5)
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and omitting the primes, we obtain the Wiener-Hopf integral equation on the semiaxis

(4.6)

with respect to the unknown Laplace transforms �L
1±(x, p) with the same kernel k(t) (1.3) as integral Eq. (1.2). In view

of the evenness of the problem �̃L
1+(x, p) = �̃L

1−(x, p), when solving integral Eqs. (2.2) and (2.3) it is sufficient, as
previously, to solve one of the integral equations of (4.6).

Using the standard Wiener-Hopf method to solve integral Eq. (4.6), in doing which one can use a special approx-
imation of the symbol of the kernel of integral Eq. (1.2) K(u) of the form (2.5), we obtain the following solution of
integral Eq. (4.6)

(4.7)

The inner integral in Eq. (4.7) is understood in the sense of the Cauchy principal value7 and contains two points of
discontinuity of the integrand u1 = 	R, u1 = 	1 in the semi-infinite interval of integration.

Substituting expressions (2.8) into Eq. (4.7) and evaluating the quadratures thereby obtained, we obtain solutions
of integral Eq. (4.6) in the expanded form

(4.8)

Reverting to the old variables, we obtain the required solution in the form of superposition (4.3).
Hence, the solution of integral Eq. (1.2), determined by the special method of successive approximations, taking

formulae (4.2), (2.11) and (4.3) into account, acquires the following form for the interval 2� < � < 4�

(4.9)

The functions �̃L
0±(x, p), �̃L±(x, p) and �L∞(x, p) are defined by relations (2.8), (4.8) and (2.9) respectively. It should

be noted that the function �L(x, p) is defined in the class of functions with an integrable singularity at the corner points
x = ±1 of the edges of the base of a plane punch, i.e.

(4.10)

On the other hand, relation (4.1) is also a solution of the problem in Laplace transforms for 2� < � < 4�. Then, changing
in relation (4.9) to the Laplace originals, we obtain a solution of the problem for the time interval 0 < t < 2t1

(4.11)
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where

(4.12)

while the functions �̃0±((a(1 + x))/(c2), t) and ϕ∞(ax)/(c2), t are defined by formulae (2.12) and (2.13).
The solution (4.12) for t1 < t < 2t1 is constructed in the class of functions similar to the class (4.10).
To determine the law of the punch motion �(t) from the solution of problem (2.14) in the new time inteval t1 < t < 2t1,

we first find the function Q(t) = −P(t) using formulae (2.15) and (4.11). We have

(4.13)

where

(4.14)

while the functions P∞(t) and P̃0±(t) are defined by formulae (2.17) and (2.18).
The condition for the punch to start to separate from the elastic half-plane in the time interval t1 < t < 2t1 can be

obtained using the same procedure as in the previous time interval 0 < t < t1 by equating the coefficient C1(t, a) to zero

for a constant singularity (1 − x2)
−1/2

at the corner points of the edges of the base of a plane punch (with a = const),
similar to condition (3.1),

(4.15)

if condition (3.2) is not satisfied in the previous time interval 0 < t < t1. Taking formula (4.11) into account, we conclude
that the achievement of the condition for the punch to start to detach in the time interval t1 < t < 2t1 leads to the following
relation

(4.16)

where

(4.17)

while the function C0(t, a) is given by formula (3.2).
From Eq. (4.16) we can determine the instant of time t = t* when the punch begins to separate from the elastic

half-plane in the time interval t1 < t < 2t1 when a = const. In this time interval solution (4.11) when t = t* converts from
the class of integrable functions into the class of continuous functions, and when t > t* condition (4.16) is converted
into an equation from which we find the variable half-width of the contact area a(t).

Condition (4.16), like (3.3), depends on the law of the punch penetration �(t), determined from the solution of
problem (2.14), which contains an integrodifferential equation, where Q(t) = −P(t) is found from the formula for P(t)
(4.13) in the interval t1 < t < 2t1. Then, for the functions a(t) and �(t) in the interval t* < t < 2t1 it is necessary, as in
Section 3, at each step of the numerical solution of the integrodifferential equation, to determine from Eq. (4.16) the
half-width of the contact area a(t) corresponding to this instant of time.
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The algorithm for solving the problem at the zeroth step (0 < t < t1) and the first step (t1 < t < 2t1), if up to the time
t < 2t1 the punch has not separated from the elastic medium, can be extended to obtain the solution of the problem at
the n-th step of the solution for the time interval

(4.18)

of the impact of a plane punch on an elastic half-plane.
The scalar field of the contact stresses in the contact area for nt1 < t < (n + 1)t1 is calculated from the formula

(4.19)

Here

(4.20)

All the integrals over uk are understood in the sense of the Cauchy principal value. The functions �∞(u, t) are found
from formulae (2.12), (2.13) and (4.12).

The contact force of the punch on the elastic medium is given by the formula

(4.21)
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The functions P∞(t), P̃0±(t), P̃1±(t) are found from formulae (2.17), (2.18) and (4.14); the values of �i are found from
the last two formulae of (4.20).

The integrodifferential equation of the punch motion on the elastic half-plane (2.14) in the time interval
nt1 < t < (n + 1)t1 considered is determined by its right-hand side, where instead of Q(t) it is necessary to substitute
−P(t) as given by formula (4.21).

The condition for the punch to separate from the medium in the time interval (4.18), assuming that the punch has
not separated from the half-plane when 0 < t ≤ nt1 (the time when separation begins t = t* (a = const)) is found from
this condition), is given by the formula

(4.22)

where

(4.23)

The functions C0(t, a) and C1(t, a) are found from formulae (3.2) and (4.17).
When t > t* (nt1 < t* < (n + 1)t1), condition (4.22) becomes an equation for determining the half-width of the contact

area a(t) at each step of the solution of integrodifferential Eq. (2.14) with Q(t) = −P(t) from relations (4.21) from
the definition of the law of the punch penetration �(t) into the elastic half-plane, and which occurs, together with the
function f(t), in the integrand of (4.23). It should be noted that when t ≥ t* the solution �(x, t) of problem (4.19),
obtained for the time interval (4.18), belongs to the class of functions that are continuous in the section |x| ≤ 1, as a
result of satisfaction of condition (4.22), whereas for nt1 < t < t* the solution �(x, t) belongs to the class of integrable
functions with a root singularity when x = ±1.

References

1. Zelentsov VB. An asymptotic method of solving transient dynamic contact problems. Prikl Mat Mekh 1999;63(2):317–26.
2. Zelentsov VB. The transient contact problem of the penetration of a rigid punch into an elastic half-plane. Izv Ros Akad Nauk MTT 1999;3:34–44.
3. Poruchikov VB. Methods of the Dynamic Theory of Elasticity. Moscow: Nauka; 1986.
4. Vorovich II, Aleksandrov VM, Babeshko VA. Non-classical Mixed Problems of the Theory of Elasticity. Moscow: Nauka; 1974.
5. Lur’ye AI. The Theory of Elasticity. Moscow: Nauka; 1970.
6. Parton VZ, Perlin PI. Methods of the Mathematical Theory of Elasticity. Moscow: Nauka; 1981.
7. Noble B. Method Based on the Wiener–Hopf Technique for the Solution of Partial Differential Equations. London: Pergamon Press; 1958.

Translated by R.C.G.


	The impact of a plane punch on an elastic half-plane
	Formulation of the problem and its integral equation
	The zeroth term of the solution of the integral equation and of the problem
	Separation of the punch from the elastic medium
	The solution of the problem over the whole period of time of the impact
	References


